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Abstract

The Schinzel–Wójcik problem consists in determming if

Given a1, · · · , ar ∈ Q∗ \ {±1}, there exist infinitely many primes p such that they have the

same multiplicative order modulo p.

In this thesis, we prove, under the assumption of Hypothesis H of Schinzel, necessary

and sufficient conditions for the existence of infinitely many primes modulo which all the

given numbers are simultaneously primitive roots and we introduce a possible complete

characterization, under Hypothesis H of the r–touples of rational numbers supported at odd

primes for which the Schinzel-Wójcik problem has affimative answer. Consequently, we study

the Schinzel–Wójcik problem on average.
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Notations and Terminology

• N - {1, 2, ...}.

• Z - The ring of integers.

• Q - The field of rationals.

• Z/pZ - The ring of integers modulo prime number p

• (Z/pZ)∗ - Multiplicative group of the field of p elements

• 〈a〉 - Subgroup of (Z/pZ)∗ generated by a

• (a, b) - Greatest common divisor of the integers a, b ∈ Z

• [a, b] - Least common multiple of the integers a, b ∈ Z

• ordp a - Order of an element a ∈ (Z/pZ)∗

• τ(n) - The divisor function

• σ(n) - The sum of prime factors of n

• ω(n) - The number of distinct prime factors of n

• Ω(n) - The number of prime factors of n counted with multiplicity

• ϕ(n) - Euler totient function

• µ(n) - Möbius function
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•
∏
p

,
∏
q

,
∏̀

- Denotes the product taken over prime numbers

• LCM(d; r)- The number of r-tuples of positive integers such that their least common

multiple is d

• ord χ - The order of the character χ in group of the characters

• f(x) = O(g(x)) or f(x) � g(x) - There exists a positive real number C and a real

number t such that |f(x)| ≤ C|g(x)| for all x > t

• f(x) = o(g(x)) - For every positive constant ε there exists a constant N such that

|f(x)| ≤ ε|g(x)| for all x > N

• f(x) ∼ g(x) - lim
x→∞

f(x)
g(x)

= 1

• π(x) - the number of primes up to a number x

• π (x, a;m) - the number of primes up to a number x which is congurent to a modulo

m

• Li(x) =
∫ x

2
dt

log t

• L/K - L is a field extension of K

• OK - The ring of integers of the field K

• p, q - Prime ideals of OK

• D (q|p) - The decomposition group of q over p

• I (q|p) - The inertia group of q over p

•
[
L/K

p

]
- Artin symbol of p

• Np - The norm of the ideal p

• Gal (L/K) - The Galois group of the field extension L/K

vi



•
[
α

p

]
n

- The n-th power residue of α in OK over p

•
(
α

p

)
- Legendre symbol

vii



Chapter 1

Introduction

One of the famous problems in Number theory is Artin’s Conjecture on primitive roots. On

September 27, 1927 Emil Artin introduced a conjecture on primitive roots to Helmut Hasse.

It states that a square free integer a /∈ {0,±1} is a primitive root modulo infinitely many

primes p. Moreover, if Na(x) := {p ≤ x : a is a primitive root modulo p}, he conjectured

that

Na(x) ∼ A(a)
x

log x
as x −→∞,

where A(a), Artin’s constant, is a positive constant depending on a.

The concept of primitive roots has been introduced by Gauss in articles 315 − 317 of his

Disquisitiones Arithmeticae (1801) during his study of the decimal expansion of the fractions

to answer why
1

7
= 0.142857 has period length 6 and

1

11
= 0.09 has period length 2.

Additionally, he tackled that how often prime p such that 10 is a primitive root modulo p

but he did not make a conjecture about it. Gauss gave many examples of primes p where 10

is a primitive root modulo p in his tables. Therefore, the following conjecture had ascribed

to Gauss by many authors

”There exist infinitely many primes p such that 10 is a primitive root modulo p”.
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In 1967, under the assumption of GRH for the kummer field Q
(
a

1
k , ζk

)
, Hooley [6]

proved that:

Na(x) = A(a)
x

log x
+O

(
x log log x

log2 x

)
, where A(a) =

∑
n≥1

µ(n)

[Q(a
1
k , ζk) : Q]

.

In 1968, free of any hypothesis, Goldfeld [5] proved the following:

Theorem 1. [5] for each D > 1,

Na(x) = A lix+O

(
x

(log x)D

)
holds for all integers a ≤ T with at most c1T

9
10 (5 log x + 1)g+D+2 exceptions, g = x

log T
,

where A =
∏
p

(
1− 1

p(p−1)

)
= 0.3739558 . . . is Artin’s constant and c1 and the constant of

O-term are positive and depend only on D.

In 1969, P.J. Stephens [21] studied Artin’s conjecture on average. He proved, free of

any hypothesis, that the asymptotic formula holds on average with condition on T . More

preciesly,

Theorem 2. [21] If T > exp(4(log x log log x)
1
2 ), then

1

T

∑
a≤T

Na(x) = A lix+O

(
x

(log x)D

)
,

where A is Artin’s constant, and the constant D > 1 is arbitrary.

Also, he proved the following:

Theorem 3. [21] Let A be Artin’s constant, and E > 2 be an arbitrary real number. Then,

for T > exp(6(log x log log x)
1
2 ), we have

1

T

∑
a≤T

{Na(x)− A lix}2 � x2

(log x)E
.

Moreover, by using the normal order method of Turan, he proved that the number of

exceptions is bounded by O(T ) when T > exp(6(log x log log x)
1
2 ) and as x tend to infinity.
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Let Γ ⊂ Q∗ be a multiplicative subgroup of finite rank r. For all primes, except those

primes with vp(g) = 0 for some g ∈ Γ, consider the reduction group Γp = {g (mod p) : g ∈ Γ}

which is well-defined subgroup of the multiplicative group F∗p. Define NΓ,m(x) := {p ≤ x :

p ≡ 1 (modm) and [Fp∗ : Γp] = m}. L. Cangelmi, F. Pappalardi and A. Susa in [14], [4]

and [15] proved, under the assumption of GRH for the kummer field Q(ζk,Γ
1/k) for k ∈ N,

that for any ε > 0, if m ≤ x
r−1

(r+1)(4r+2)
−ε, then

NΓ,m(x) =

(
δmΓ +O

(
1

ϕ(mr+1 logr x)

))
Li(x) as x→∞,

where δmΓ is a rational multiple of Cr =
∑
n≥1

µ(n)
nrϕ(n)

=
∏
p

(
1− 1

pr(p−1)

)
.

In 2015, C. Pehlivan and L. Menici [13] studied the average behaviour of NΓ,m(x) where

Γ = 〈a1, · · · , ar〉 ⊆ Zr and they obtained the following results:

Theorem 4. [13] Let T1, . . . , Tr ∈ R. Assume T ∗ := min{Ti : i = 1, . . . , r} > exp(4(log x log log x)
1
2 )

and m ≤ (log x)D for an arbitrary positive constant D. Then

1

T1 · · ·Tr

∑
ai∈Z

0<a1≤T1
...

0<ar≤Tr

N〈a1,··· ,ar〉,m(x) = Cr,m Li(x) +O

(
x

(log x)M

)
, as x −→∞

where Cr,m =
∑
n≥1

µ(n)
(nm)rϕ(nm)

and M > 1 is arbitrarily large.

Theorem 5. [13] if T ∗ > exp(6(log x log log x)
1
2 ), then

1

T1 · · ·Tr

∑
ai∈Z

0<a1≤T1
...

0<ar≤Tr

{
N〈a1,··· ,ar〉,m(x)− Cr,m Li(x)

}2 � x2

(log x)M ′
, as x −→∞

where M ′ > 2 is arbitrarily large.

By using the Euler product expansion and some properties of Euler function, they could

write

3



Cr,m =
1

mr+1

∏
p|m

(
1− p

pr+1 − 1

)−1

Cr

which can be used in the proof of the last last theorem and deduced the following result,

For Ti > exp(4(log x log log x)
1
2 ) for all i = 1, . . . , r, m ≤ (log x)D and for any constant

M > 2,

1

T1 · · ·Tr

∑
ai∈Z

0<a1≤T1
...

0<ar≤Tr

N〈a1,··· ,ar〉,m(x) =
∑
p≤x

p≡1 (mod m)

Jr((p− 1)/m)

(p− 1)r
+O

(
x

(log x)M

)
,

where Jr(n) = nr
∏̀
|n

(1 − 1/`r) is the so called Jordan’s totient function, which is a

generalization of Moree’s result in [10].

In this thesis, we will study Schinzel–Wójcik problem which is related to Artin’s conjec-

ture. In 1992, Schinzel and Wójcik [20] proved that

Given any rational a, b ∈ Q∗ \ {±1}, there exist infinitely many primes p such

that ordp a = ordp b.

The proof of Schinzel and Wójcik ’s result is very ingenious and uses Dirichlet’s Theorem

for primes in arithmetic progressions. In the last line of their paper, Schinzel and Wójcik

conclude by stating the following problem:

Given a, b, c ∈ Q∗ \ {±1}, is there infinitely many primes p with the property

that ordp a = ordp b = ordp c?

In 1996, Wójcik [23] produced an examples of triplets of integers (a, b, c) for which the

above property is not satisfied for any odd prime p:

let a = e, b = e2, c = −e2, e ∈ Q∗ \ {±1}. For any p ≥ 3 and δ = ordp e =

ordp−e2, then we have e2δ ≡ (−e2)δ ≡ 1 (mod p). Therefore, (−1)δ ≡ 1 (mod p)

so that 2 | δ and (e2)δ/2 ≡ 1 (mod p). This implies ordp e
2 | δ

2
contradicting

ordp e
2 = δ.

However, in 1996, Wójcik [23] proved that:
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Theorem 6. Wójcik (1996)[23]. Let K/Q be a finite extension and a1, · · · , ar ∈ K \ {0, 1}

be such that the multiplicative group 〈a1, . . . , ar〉 ⊂ K is torsion free. Then the Schinzel

Hypothesis H implies that there exist infinitely many primes p of degree 1 such that ordp a1 =

· · · = ordp ar.

It is an immediate corollary that if a, b, c ∈ Q∗ \ {±1} are such that −1 /∈ 〈a, b, c〉,

then Hypothesis H implies that the Schinzel-Wójcik problem for {a, b, c} has an affirmative

answer.

Note however that the sufficient condition −1 /∈ 〈a, b, c〉 is not always necessary. Indeed,

consider Schinzel–Wójcik problem for {2, 3,−6}. Theorem 6 does not apply although for

p = 19, 211, 499, 907 and for many more primes p, one has that ordp 2 = ordp 3 = ordp−6.

Hence, empirical data suggest that the Schinzel–Wójcik problem has an affirmative answer.

Observe that Wójcik Theorem does not answer the Schinzel-Wójcik problem for sets of the

form {a, b,−ab} ∈ Q∗ \ {±1}.

The Generalized Riemann Hypothesis (GRH for short) can be applied to the Schinzel-

Wójcik problem. Indeed, we have the following due to K. R. Matthews in 1976:

Theorem 7. (K. R. Matthews-1976) [9]. Given a1, · · · , ar ∈ Z∗, there exists a constant

C = C(a1,··· ,ar) ∈ R≥0 such that if the Generalized Riemann Hypothesis holds, then

#{p ≤ x : ordp ai = p− 1, for all i = 1, · · · , r} = C li(x) +O

(
x

(log log x)2r−1

(log x)2

)
.

This result is known as the simultaneous primitive roots Theorem and it has an immadiate

consequence which is:

Corollary 8. With the above notation, if C = C(a1,··· ,ar) 6= 0 and the GRH holds, then the

Schinzel-Wójcik problem has an affirmative answer for a1, · · · , ar.

Further results in [9] imply that C = C(a1,··· ,ar) = 0 if and only if at least one of the

following conditions is satisfied:
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(α) There exist 1 ≤ i1 < · · · < i2s+1 ≤ r such that ai1 · · · ai2s+1 ∈ Q∗2;

(β) There exist 1 ≤ i1 < · · · < i2s ≤ r such that ai1 · · · ai2s ∈ −3Q∗2, and for all primes

` ≡ 1 mod 3 there exists at least one element of S which is a cube modulo `.

Each of the conditions above implies that a1, · · · , ar can not be simultaneously primitive

roots for infinitely many primes.

From the above, it follows that so that GRH implies that the Schinzel-Wójcik problem

has an affirmative answer in this case. So, the Schinzel–Wójcik problem is still open both

on Hypothesis H and on GRH.

Also, F. Pappalardi and A. Susa [16] proved some results under the GRH with the

following notation: Let Γ = 〈a1, . . . , ar〉 be the subgroup of Q∗ generated by a1, . . . , ar, and

by r(a1, . . . , ar) = rankZ〈a1, . . . , ar〉 its rank as abelian group. Clearly, 1 ≤ r(a1, . . . , ar) ≤ r.

Further, let Γ(N) := Γ ·Q∗N/Q∗N ,

Γ̃(N) =
{
ξQ∗N ∈ Γ(N) such that [Q(N

√
ξ) : Q] ≤ 2 and disc(Q(N

√
ξ)) | N

}
and Γk := 〈a

k
k1
1 , . . . , a

k
kr
r 〉 if k = (k1, . . . , kr) ∈ Nr, k = [k] is the least common multiple of

k1, . . . , kr and µ(k) := µ(k1) · · ·µ(kr).

Theorem 9. [16] Let {a1, . . . , ar} ⊂ Q \ {0,±1} and set Γ = 〈a1, . . . , ar〉. Assume that the

Generalized Riemann Hypothesis holds for the fields Q(ζn, a
1/n1

1 , . . . , a
1/nr
r ) (n, n1, . . . , nr ∈ N)

and that r(a1, . . . , ar) ≥ 2. Then

Sa1,...,ar(x) =

(
δa1,...,ar +Oa1,...,ar

(
(log log x)2r−2

log x

))
li(x),

where
δa1,...,ar =

∑
m∈N
k∈Nr

µ(k)

ϕ(mk)

#Γ̃k(mk)

#Γk(mk)

and the notation is the same as above.

When each ai is the power of the same rational number, the group 〈a1, . . . , ar〉 has rank

one. In this case we write ai = ahi for each i = 1, . . . , r and we note that we can assume

6



that the greatest common divisor (h1, . . . , hr) = 1 otherwise we can replace a with a(h1,...,hr).

Here, the Generalized Riemann Hypothesis can be avoided.

Theorem 10. [16] Let a ∈ Q \ {0,±1}, h1, . . . , hr ∈ N+ with (h1, . . . , hr) = 1 and h =

[h1, . . . , hr]. Then the following asymptotic formula holds:

Sah1 ,...,ahr (x) =

(
δah1 ,...,ahr +Oa,h

(
(log log x)ω(h)+3

(log x)2

))
li(x),

where ω(h) denotes the number of distinct prime factors of h, if a = ±bd with b > 0 not a

power of any rational number and D(b) = disc(Q
√
b), then

δah1 ,...,ahr =
∏
l|h

(
1− l1−vl(d)

l2 − 1

)
×

1 + t2,h×

sa + tD(b),4h×εa
∏

l|2D(b)

1

1− l2−1
l1−vl(d)

 ,
where

sa =


0 if a > 0;

−3·2v2(d)−3
3·2v2(d)−2

if a < 0;

tx,y =


1 if x | y;

0 otherwise;

and

εa =



(
−1

2

)2max{0,v2(D(b)/d)−1}
if a > 0;(

−1
2

)22−max{1,v2(D(b)/d)}
if a < 0 and v2(D(b)) 6= v2(8d);

1
16

if a < 0 and v2(D(b)) = v2(8d).

In this degenerate case, they gave a complete answer to the Schinzel–Wójcik problem.

Corollary 11. [16] Let a ∈ Q\{0,±1} and h1, . . . , hr ∈ N+. Then δah1 ,...,ahr 6= 0. Therefore,

the Schinzel–Wójcik problem for {ah1 , . . . , ahr} has an affirmative answer.

In the case when a1, . . . , ar are all primes they expressed the density in terms of an infinite

Euler–product.

7



Theorem 12. [16] Let p1, . . . , pr be primes. Set

Λ` = −`(`
r − (`− 1)r − 1)

(`− 1)(`r+1 − 1)
and δ =

∏
`

(1 + Λ`) .

Then

δp1,...,pr = δ ·

 ∑
d|p1···pr

(
1− 2− 2−r

3
(1− ηd)

)∏
`|d
`>2

(
Λ`

1 + Λ`

) ,

where η1 = 1 and

ηd =



−1 if d ≡ 3 mod 4;

µ(d) if d ≡ 1 mod 4, d 6= 1;

−1/2− 1/2r if d ≡ 2 mod 4.

In Chapter 2, we recall some topics from Algebraic Number Theory and some Linear

Algebra that we will discuss a method to solve a system of congruences in several variables

modulo an integer.

In Chapter 3, we state the important hypothesis due to Schinzel which is used in Chapter

4 and Chapter 5. Also, it is explained that it implies many well-known other conjecture like

the Conjecture of twin primes, Artin’s Conjecture and one of Landau’s Conjectures which is

really due to Euler.

In Chapter 4, in collaboration with F. Papplardi, we proved that:

Theorem 13. [2] Assume that Hypothesis H holds, let S = {a1, . . . , ar} ⊂ Q and assume

1. For each 1 ≤ i1 < · · · < i2s+1 ≤ r one has that ai1 · · · ai2s+1 6∈ Q∗2;

2. If there exist 1 ≤ i1 < · · · < i2s ≤ r such that ai1 · · · ai2s ∈ −3Q∗2, then there exists a

prime ` ≡ 1 mod 3 such that none of the elements of S is a cube modulo `.

Then the set PS = {p prime | ∀a ∈ S, a is a primitive root modulo p} is infinite.

8



In Chapter 5, we introduce a complete characterization, under Hypothesis H of the r–

touples of rational numbers supported at odd primes for which the Schinzel-Wójcik problem

has affimative answer. That is,

Theorem 14. Let {a1, . . . , ar} ⊂ Q∗ \ {±1}, v2(ai) = 0 for all i = 1, · · · , r. Assume Hy-

pothesis H. Then the Schinzel-Wójcik problem has affimative answer for {a1, . . . , ar} if and

only if at least one of the following two conditions is satisfied:

1. −1 /∈ 〈a1, . . . , ar〉 for all j ∈ {1, . . . , r};

2. For every ν1, . . . , νr ∈ Z, if aν11 · · · aνrr = 1, then ν1 + · · ·+ νr ≡ 0 (mod 2).

In Chapter 6, we prove an average version of the Schinzel–Wójcik asymptotic formula

free of any hypothesis. More precisely, Assume T > exp
(

4 (log x log log x)
1
2

)
. Then, for

every k > 1, we have

1

T r

∑
a≤T

Sa,m(x) = δm li(x) +O

(
x

(log x)k

)
,

where δm = 1
mrϕ(m)

∏̀ (
1 + ϕ((m,`))f(`)

ϕ(`)(m,`)

)
, f(`) = (1− 1

`
)r − 1.

9



Chapter 2

Preliminaries

In this chapter, I introduce some basic concepts of Algebraic Number Theory which can

be found in many books of algebraic number theory, for example in [18] and [7].

2.1 Artin symbol

Let L/K be a field extension of finite degree n. Let OL ,resp. OK be the ring of integers

of L (respectively, K). Given p a prime ideal of OK , consider pOL the extended ideal of OL.

The following property holds pOL = qe11 qe22 · · · q
eg
g and n =

g∑
i=1

eifi . The exponent ei > 0 of

qi is called the ramification index of qi over OK and the dimension fi of OL/qi over OK/p

is called the residual degree of qi over OK . Furthrtmore, the prime ideals of L which appear

in the factorization of pOL, called the primes above p, are exactly the primes q such that

q ∩ OK = p. In the case when L/K is Galois extenstion with Galois group G = Gal(L/K),

G acts transitivily on the set of prime ideals above p. Moreover, they all have the same

ramification index e and the same residual degree f . Therefore, we have pOL = (q1q2 · · · qg)e

and n = efg.

Let q ⊆ OL such that q∩OK = p. The decomposition group D (q|p) of q over p, is the set

of all automorphisms σ ∈ G that fix q (i.e., σ(q) = q). It is a subgroup of G with cardinality

10



n

g
(as a consequence of the orbit-stabilizer Theorem).

Each σ ∈ D (q|p) induces an automrphism σ of OL/q such that σ(x+q) = σ(x)+q. More-

over, the map σ 7−→ σ is a surjective group homomorphism from D (q|p) to Gal

(
OL/q
OK/p

)
with kernel I (q|p) = {σ ∈ D (q|p) : σ(x)− x ∈ q} which called the inertia group of q over p.

Consequently, the cardinality of I (q|p) is e and p is unramified in OL if and only if for any

q above p the inertia group of q is trivial. Moreover, the Decompostion group and the inertia

group of σ(q) are conjugated to the Decompostion group and the inertia group of q for each

in σ ∈ G, i.e. D (σ(q)|p) = σD (q|p)σ−1 and I (σ(q)|p) = σI (q|p)σ−1 for each σ ∈ G. In

the case of abelian extension, all the groups D (σ(q)|p) and I (σ(q)|p) are the same and they

depend only on p, so I shall write it as D (p).

With the above notation, consider a Galois extention L/K of degree n with Galois group

G. Let p ⊂ OK be a prime ideal that does not ramify in OL and let q ⊂ OL be a prime ideal

above p. The Inertia group I(q) of q is trivial, so its Decomposition group is isomorphic to the

Galois group of Gal

(
OL/q
OK/p

)
which is cyclic with a generator σ defined as x+q 7−→ σ(x)+q

where q = Nq = |OK/q| and x ∈ OK . Therefore, D (q|p) is cyclic with a generator σ defined

by the relation σ(x) ≡ xq( mod q). This generator is called the Frobenious Automorphism of

q which shall be denoted as (L/K, q). In the case of abelian extention, it depends only on p

we will call it the Artin symbol of p and denote it by

[
L/K

p

]
.

2.2 Power Residues

Let K be a number field with ring of integers OK that contains a primitive n-th root of

unity ζn. Let p ⊂ OK be a prime ideal and assume that n /∈ p.

An analogue of Fermat’s Little Theorem holds in OK , αNp−1 ≡ 1 (mod p) for α ∈ OKrp.

In particular, ζNp−1
n ≡ 1 (mod p). By the following Lemma, Np ≡ 1(modn).

Lemma 15. ζan ≡ ζbn (mod p) if and only if ζan ≡ ζbn.

Proof. Suppose that ζan ≡ ζbn (mod p), hence ζa−bn ≡ 1 (mod p) since ζbn is unit. Therefore

11



ζan = ζbn, otherwise n =
n−1∏
i=1

(1 − ζ in) ∈ p which contadicts the assumption. The converse is

immediate.

As a consequence, the equation xn ≡ 1 (mod p) has exactly n solutions, namely, 1, ζn, . . . , ζ
n−1
n .

Since
(
α

Np−1
n

)n
≡ 1 (mod p), there exist a unique s ∈ {1, · · · , n− 1} : αNp−1/n ≡ ζsn (mod p).

This root of unity is defined to be the n-th power residue of α in OK over p, denoted by[
α

p

]
n

. We will conclude by the following properties:

(i)

[
α

p

]
n

= 1 if and only if xn ≡ α( mod p) has a solution x ∈ K;

(ii)

[
α

p

]
n

≡ α(Np−1)/n (mod p);

(iii)

[
α

p

]
n

[
β

p

]
n

=

[
αβ

p

]
n

.

(iv) If α ≡ β (mod p), then

[
α

p

]
n

=

[
β

p

]
n

.

2.2.1 Legendre Symbol

Consider K = Q and n = 2. For a prime p, odd, and for α ∈ Z, the Legendre symbol, de-

noted by

(
α

p

)
, is defined to be αp−1/2 in Z/pZ. Since p| (αp−1 − 1) =

(
α

p−1
2 − 1

)(
α

p−1
2 + 1

)
,

therefore

(
α

p

)
= α

p−1
2 = 1 or −1 according as α is square mod p or not. We have the fol-

lowing properties:

(i)

(
−1

p

)
= (−1)p−1/2;

(ii)

(
α

p

)
≡ αp−1/2 (mod p);

(iii)

(
α

p

)(
β

p

)
=

(
αβ

p

)
;

(iv) If α ≡ β (mod p), then

(
α

p

)
=

(
β

p

)
;
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(v) (Law of Quadratic Reciprocity) Let p, q are two distinct odd primes,

(
q

p

)(
p

q

)
= (−1)

p−1
2

p−1
2 .

2.2.2 Cubic Residue Symbol

Consider K = Q(ω), where ω is a primitive cubic root of unity and n = 3. We have that

OK = Z[ω] is a principle ideal domain. Given a prime ideal 〈π〉 such that N(π) 6= 3. For

α ∈ K, the Cubic Residue Symbol, denoted by

[
α

p

]
3

, is defined to be αN(π)−1/3 in Z[ω]/ 〈π〉

which equals exactly one of the cubic roots of unity 1 or ω or ω2. In paricular, it equals 1 if

and only if α is a cubic residue(,i.e. x3 ≡ α (mod π) has a solution). We have the following

properties:

(i)
[α
π

]
3
≡ α(N(π)−1)/3 (mod π);

(ii)
[α
π

]
3

[
β

π

]
3

=

[
αβ

π

]
3

;

(iii) If α ≡ β (mod π), then
[α
π

]
3

=

[
β

π

]
3

;

(iv)
[α
π

]
3

=
[α
π

]2

3
=

[
α2

π

]
3

;

(v)
[α
π

]
3

=

[
α

π

]
3

;

(vi)

[
α

π

]
3

=

[
α2

π

]
3

and

[
n

q

]
3

= 1 if n is a rational integer relatively prime to a rational

prime q ≡ 2 (mod 3).

The following definition is essential in stating the Law of Cubic Reciprocity.

Definition 16. A prime element π ∈ Z[ω] is said to be primary if π ≡ 2 (mod 3),

equivelantly, a ≡ 2 (mod 3) and b ≡ 0 (mod 3) whenever π = a+ bω.
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(vii) If N(π) = p ≡ 1 (mod 3), then among the associates of π exactly one is primary.

(viii) (Law of Cubic Reciprocity) Let π1, π2 be primary, N(π1), N(π2) 6= 3 and N(π1) 6=

N(π2). Then [
π1

π2

]
3

=

[
π2

π1

]
3

(viii) (Supplement to the Cubic Reciprocity Law) Suppose that N(π) 6= 3. If π = q is rational,

write q = 3m− 1. If π = a+ bω is a primary complex prime, write a = 3m− 1. Then

[
1− ω
π

]
3

= ω2m.

2.3 Chebotarev Density Theorem

Chebotarev Density Theorem is a wonderful important theorem in Algebraic Number

Theory. Chebotarev Density Theorem can be considered as a generalisation of Dirichlet’s

Theorem on Arithmetic Progressions and Frobenious Theorem. It is used in the study of

Artin’s conjecture on primitive roots. Informally, in a Galois extension of a number field, the

density of prime ideals such that the Artin symbol of these prime ideals equal to a certain

conjuagacy class of the Galois group of the field extension equals the portion of the elements

of the Galois group which are in the conjuagacy class . There are many versions; however,

in this research the following is applied.

Theorem 17. (Chebotarev). Let L/K be a Galois extention of a number field and C be a

conguagcy class(or union of conjuagacy classes) of the Galois group Gal (L/K). Define

PC :=

{
p ⊆ OK : p is unramified inLand

[
L/K

p

]
⊆ C

}
,

then the natural density of PC exists and equals to
|C|

|Gal (L/K) |
.
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Corollary 18. With the above notation assume further that Gal (L/K) is abelian. Given

any σ ∈ Gal (L/K), there are infinitley many unramified prime ideals of OK such that the

Artin symbol of p equals σ.

Corollary 19. With the same notation. Let p ⊆ OK be an unramified prime ideal in OK.

p splits completely in OL if and only if the Artin symbol of p equals the identity.

Proof. It is a direct consequence of the fundamental relation n =
g∑
i=1

eifi and the result

D (q|p) is isomorphic to Gal

(
OL/q
OK/p

)
.

2.4 Smith Normal Form

Let A be a matrix with entries in Z (or in any principal ideal domain R), By using

row and coulmn operations, we can get a daigonal matrix with certain properties. The row

(respectively, column) operations are

1. interchange two rows (respectively, columns);

2. multiply a row (respectively, column) by a unit;

3. add an integer multiple of row (respectively, coulmn) to another row (respectively,

coulmn).

Theorem 20. Let A ∈Mm×n(Z). There exist L ∈ SLm(Z) and R ∈ SLn(Z) such that

LAR = D = diag(d1, d2, . . . , ds, 0, . . . , 0),

where di > 0, i = 1, . . . , s and di|di+1, i = 1, . . . , s− 1.

Proof. By using Euclidean algorithm, by using the row operations, we get a row whose first

element is the GCD of the elements in the first column. Then by using the row operations,
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we matrix with the GCD in (1, 1) position and zeros in the rest of the first column. By

repeating the same thing for the first row, using coulmn operations, we get the GCD of the

elements in the first row in (1, 1) position and zeros in the rest of the first row.

The zeros in the first coulmn most likely are not zeros anymore. By repeating this procedure

for the first row and the first coulmn, we get that all elements in the first row and the first

column are zeros except for the element in the position (1, 1). This process is guaranteed to

terminate because the GCD gets smaller each time.

If we continue in the same manner for the second row and the second coulmn and then for the

rest rows and coulmns, one by one, we get a diagonal form ofA which is diag(e1, . . . , es, 0, . . . , 0).

Since each row( resp. coulmn) operation can be represented as a left( resp. right) mulipli-

cation of an elementry( unimodular) matrix by A, we can write

L
′
AR

′
= diag(e1, . . . , es, 0, . . . , 0),

where L
′ ∈ SLm(Z) and R

′ ∈ SLn(Z).

It remains for us to transform L
′
AR

′
= diag(e1, . . . , es, 0, . . . , 0) to a diagonal form satisfying

the divisiblity condition. Let us look on the submatrix diag(e1, e2). Let d = gcd(e1, e2). We

may write d = e1x+ e2y for some x, y ∈ Z and e1 = dα and e2 = dβ for some α, β ∈ Z. By

performing the following row and column operations

1. xR1 +R2 → R2;

2. yC2 + C1 → C1;

3. −αR2 +R1 → R1;
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4. βC1 + C2 → C2;

5. Interchange R1 and R2.

We get diag(d,−e2α which satisfies the divisiblity condition. Then by applying the same

manner for the rest of the digonal elements, we get

LAR = D = diag(d1, d2, . . . , ds, 0, . . . , 0),

where L ∈ SLm(Z) and R ∈ SLn(Z), di > 0, i = 1, . . . , s and di|di+1, i = 1, . . . , s− 1.

2.5 Solving a system of linear congurences

Let A is a nonzero m × n matrix with integer entries, B is m × 1, X is n × 1 and ` ∈ N.

Consider the system of linear congruences

a11x1 + · · ·+ a1nxn ≡ b1 (mod `)

...

am1x1 + · · ·+ amnxn ≡ bm (mod `)

which can be written shortly as AX ≡ B (mod `). We are going to introduce a criteria

to solve the system of linear congruences. By Theorem 1, there exist L ∈ SLm(Z) and

R ∈ SLn(Z) such that

LAR = D = diag(d1, d2, . . . , ds, 0, . . . , 0),

where di > 0, i = 1, . . . , s and di|di+1, i = 1, . . . , s − 1. Therefore, we get a comparable

system( since L and R are invertable) DY ≡ K (mod `), where X = RY and K = LB, that
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is,

d1x1 ≡ k1 (mod `)

...

dsx1 ≡ ks (mod `)

0 ≡ ks+1 (mod `)

...

0 ≡ km (mod `),

which is solvable if and only if `|ki for i = s+ 1, . . . ,m and gcd(di, `)|ki for i = 1, . . . , s.
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Chapter 3

Hypothesis H And Its Applications

3.1 Hypothesis H

Hypothesis H has been introduced by A. Schinzel. Informally, let f1, f2, · · · , fk be integer

valued irriducible polynomials, (under some conditions) A. Schinzel conjecured that there

are infinitely many integers n such that f1(n), f2(n), · · · , fk(n) are primes similtineously. It

covers many famous conjectures as one of Landau’s conjectures and Twin prime conjecture

as shown herewith. Actually, it bulids on the Bunyakovsky conjecture for a single polynomial

and on the Hardy-Littlewood conjectures for multiple linear polynomials.

To figure out which condition we need to add, let us study these two polynomials x +

2, x + 3. It is easy to see that they can not generate primes simltineously because one of

them is even > 2 and the other is odd. Therefore, we need to add a condition to pin all the

fixed divisors down, that is, for any prime p, there exist an integer n such that p - fi(n) for

i = 1, · · · , k. Now, we can formulate Hypothesis H as in [19]:

Hypothesis H (Schinzel, 1959) Let f1, . . . , fk ∈ Z[x] be irreducible polynomi-

als with positive leading coefficients and such that gcd(f1(n) · · · fk(n) | n ∈ N) =

1. Then there are infinitely many t ∈ N such that f1(t), . . . , fk(t) are all primes.
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3.2 Applications of Hypothesis H

Let us see how Hypothesis H cover some famous conjectures.

• Twin primes conjecture:

Consider the polynomials x, x + 2. It is easy to see that they do not have any fixed

divisor, so Hypothesis H implies that there are infinitly many n such that n, n+ 2 are

primes similtiniously. Therefore, Hypothesis H implies the Twin primes conjecture.

• One of Landau’s conjectures:

Actually, this conjecture goes back to Euler and is still unproven. In 1725, Euler

mentioned in a letter to Goldbach that n2 + 1 is often prime for n ≤ 1500. Hypothesis

H implies this conjecture just by considering this polynomial x2 + 1.

• Artin’s conjecture on primitive roots:

In 1958, A. Schinzel and W. Sierpiński [19] proved the following theorem:

Theorem 21. [19] Hypothesis H implies Artin’s conjecture.

Proof. Let g = a2b : a ∈ N, b ∈ Z, b 6= 1 be square free. Let b1 be the greatest odd divisor of

b. Firstly, we will prove that there exist two polynomials f1(x) and f2(x) satisfying

• Condition S: There is no integer > 1 divides the product f1(x)f2(x) for every x ∈ Z;

• Condition 1: For every x ∈ N, b is non-quadratic residue modulo f1(x);

• Condition 2: f1(x)− 1 = 2f2(x) if b 6= 3 and f1(x)− 1 = 2f2(x) if b = 3.

Consider the case that b < 0. Let f1(x) = −4bx − 1 and f2(x) = −2bx − 1. It is clear

that Condition 2 holds and Condition S is satisfied because f1(0)f2(0) = 1. Now, we are
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going to study Condition 1. If b is even, we have f1(x) ≡ −1 (mod 8) and the Jacobi symbol(
2

f1(x)

)
= 1, consequently

(
b

f1(x)

)
=

(
2

f1(x)

)(
−b1

f1(x)

)
= −

(
b1

f1(x)

)
= −(−1)

b1−1
2 (−1)

b1−1
2 = −1

which proves that b is non-quadratic residue modulo f1(x), i.e., Condition 1 holds. If b is

odd, b = −b1. Thus, b is non-quadratic residue modulo f1(x).

Consider the case that b > 0 and even. Hence, b = 2b1, b1 is odd. Let f1(x) = 4bx + 2b −

1, f2(x) = 2bx+ b− 1 and P (x) = f1(x)f2(x). Since P (1) + P (−1)− 2P (0) = 16b2, P (0) =

(2b− 1)(b− 1) and b is even, gcd(P (1) + P (−1)− 2P (0), P (0)) = 1. Therefore, Condition S

holds. Also, it is clear that Condition 2 holds. Since b = 2b1 = 2(2k+ 1), f1(x) ≡ 3 (mod 3),

consequently(
2

f1(x)

)
= −1 and

(
b

f1(x)

)
=

(
2

f1(x)

)(
b1

f1(x)

)
= −

(
b1

f1(x)

)
= −(−1)

b1−1
2

(
f1(x)

b1

)
= −(−1)

b1−1
2

(
−1

b1

)
= −1.

which proves that b is non-quadratic residue modulo f1(x), i.e., Condition 1 holds.

Consider the case that b > 0 and odd integer > 3. So, b = `1`2 · · · `k such that `1 < `2 <

· · · < `k and `i > 3 is prime for all i = 1, · · · , k. There are at least two non-quadratic

residues modulo `k and one of them satisfying n0 6≡ −1 (mod `k). The following system

n ≡ −1 (mod 4`1`2 · · · `k−1)

n ≡ −n0 (mod `k)
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has obviously a solution n = n1. Let f1(x) = 4bx+ n1, f2(x) = 2bx+ 1
2
(n1 − 1) and P (x) =

f1(x)f2(x). It is easy to see that P (1) + P (−1) − 2P (0) = 16b2 and P (0) = 1
2
n1(n1 − 1).

Since 1
2
n1(n1 − 1) ≡ −1 (mod 2`1`2 · · · `k−1), n1 6≡ 0 (mod `k) and 1

2
(n1 − 1) 6≡ 0 (mod `k),

gcd(4b, n1) = 1 and gcd(2b, 1
2
(n1 − 1)) = 1. Therefore, gcd(16b2, 1

2
n1(n1 − 1)) = 1 which

implies that gcd(P (1) + P (−1)− 2P (0), P (0)) = 1. Hence, the polynomials f1(x) and f2(x)

satisfy Condition S. Also, Condition 2 is satisfied. Since f1(x) ≡ −1 (mod 4`1`2 · · · `k−1) and

f1(x) ≡ n1 (mod `k), so(
b

f1(x)

)
= (−1)

b1−1
2

(
f1(x)

b

)
=

(
−f1(x)

b

)
=

(
−n1

`1`2 · · · `k−1

)(
−n1

`k

)
=

(
1

`1`2 · · · `k−1

)(
n0

`k

)
= −1

which proves than b is non-quadratic residue modulo f1(x), i.e. Condition 1 holds.

In the case b = 3, let f1(x) = 12x + 5 and f2(x) = 3x + 1. It is clear that Condition 1,

Condition 2 and Condition S hold.

Let x be one of such numbers such that f1(x) > g4. Suppose, by contrary, that g is not

primitive root modulo f1(x), i.e., g belong to an exponent modulo f1(x) which less that

f1(x)− 1. So by Condition 2, we have f1(x)|g
f1(x)−1

2 − 1 or f1(x)|g4− 1. By Euler ’s criterion

for Legendre symbol and by Condition 1, we get

g
f1(x)−1

2 ≡
(

g

f1(x)

)
≡
(

a

f1(x)

)2(
b

f1(x)

)
=

(
b

f1(x)

)
≡ −1 (mod f1(x))

Which contradicts the fact that f1(x)|g
f1(x)−1

2 −1. Hence, f1(x)|g4−1, which also contradicts
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with f1(x) > g4 > 1. Therefore, g is a primitive root modulo f1(x).

By Hypothesis H, there exist infinitely many x ∈ N such that f1(x) and f2(x) are both

primes. Therefore, g is a primitive root for infinitely many primes.

3.3 A fake Analouge

Finally, Hypothesis H fails over finite fields. In 1962, Swan noted that although x8 + α3

over the ring F2[α] is irreducible and since it has no fixed prime polynomial divisor, all the

other values over are composite.
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Chapter 4

On Simultaneous Primitive Roots

This work has been done in collaboration with F. Pappalardi and published in Acta

Arithmetica [2] . This paper was inspired by A. Granville at the Centre de Recherches

Mathématiques of Montréal in January 2006. The authors would like to thank Denis R.

Akhmetov and Sergei Konyagin for some useful comments.

4.1 Introduction

Given a prime p and a ∈ Q∗, we say that a is a primitive root modulo p if p does not

divide either the numerator or the denominator of a and the multiplicative order of a mod p

equals p− 1. Let S = {a1, . . . , ar} ⊂ Q∗ \ {±1} and denote

PS = {p prime | ∀a ∈ S, a is a primitive root modulo p} .

In the case where S ⊂ Z, assuming the Generalized Riemann Hypothesis for suitable number

fields, it was proved by K. Matthews in 1976 [9] that PS is finite if and only if at least one

of the two following conditions is satisfied:

(α) There exist 1 ≤ i1 < · · · < i2s+1 ≤ r such that ai1 · · · ai2s+1 ∈ Q∗2;

(β) There exist 1 ≤ i1 < · · · < i2s ≤ r such that ai1 · · · ai2s ∈ −3Q∗2, and for all primes
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` ≡ 1 mod 3 there exists at least one element of S which is a cube modulo `.

Note that it is easy to verify without appealing to the GRH (see Proposition 23 below) that

if either (α) or (β) are satisfied, then PS is finite. In all other cases, not only PS is infinite

but it has non zero density (under GRH). The hypothesis that all the elements of S are

integers does not seem crucial in Matthews work.

The goal of this note is to prove the conclusion of Matthews Theorem assuming the

Schinzel’s Hypothesis H as in [19]:

Hypothesis H (Schinzel, 1959) Let f1, . . . , fk ∈ Z[x] be irreducible polynomi-

als with positive leading coefficients and such that gcd(f1(n) · · · fk(n) | n ∈ N) =

1. Then, there are infinitely many t ∈ N such that f1(t), . . . , fk(t) are all primes.

We will prove the following

Theorem 22. [2] Assume that Hypothesis H holds, let S = {a1, . . . , ar} ⊂ Q and assume

1. For each 1 ≤ i1 < · · · < i2s+1 ≤ r one has that ai1 · · · ai2s+1 6∈ Q∗2;

2. If there exist 1 ≤ i1 < · · · < i2s ≤ r such that ai1 · · · ai2s ∈ −3Q∗2, then there exists a

prime ` ≡ 1 mod 3 such that none of the elements of S is a cube modulo `.

Then the set PS is infinite.

When r = 1, the statement that P{a1} is infinite is the Artin Conjecture for primitive

roots. It was proven to hold under the assumption of the Generalized Riemann Hypothesis

by C. Hooley in 1967 [6]. It was also considered by Schinzel and Sierpinski in [19, page 199]

as an example of application of Hypothesis H that they proved to imply Artin Conjecture.

Remark. Suppose that S = {q1b
3
1, q2b

3
2, q1q2b

3
3, q

2
1q2b

3
4} where q1 and q2 are distinct primes

different from 3 and b1, b2, b3, b4 ∈ Q∗. Then, for all primes p ≡ 1 mod 3, at least one element

of S is congruent to a cube modulo p.
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Proposition 23. [16] Let S = {a1, . . . , ar} ⊂ Q∗ \ {±1} such that if either (α) or (β) are

satisfied. Then, PS is finite.

Proof. If p ∈ PS, then a
p−1
2

i ≡ −1( mod p) for all i = 1, . . . , r. If (α) holds, then there exists

b ∈ Q∗ such that ai1 = b2ai2 · · · ai2s+1 . Hence

−1 ≡ a
p−1
2

i1
≡
(
b2ai2 · · · ai2s+1

) p−1
2 ≡ 1 mod p

so that p | 2. If (β) holds and if ai1 · · · ai2s = −3b2 for some b ∈ Q∗, then

1 ≡ (ai1 · · · ai2s)
p−1
2 ≡

(
−3

p

)
mod p

which implies that p ≡ 1 mod 3. From the second part of (β), there exists ik such that

aik ≡ c3 mod p which contradicts the fact that aik is a primitive root modulo p.

4.2 Lemmata

Given S = {a1, . . . , ar} ⊂ Q∗ \ {±1}, we set

L = {` prime | v`(a) 6= 0 for some a ∈ S}.

Then L is clearly finite. Furthermore, we set

L′ =

L ∪ {−1} if S * Q>0;

L otherwise.

We write L′ = {`1, . . . , `s} and when L′ * Q>0 we assume that `1 = −1. Further, we set

L = 4|`1 · · · `s|.

For each j = 1, . . . , r, write aj = `
e1j
1 · `

e2j
2 · · · `

esj
s . Then, the matrix

E =


e11 · · · es1
...

...

e1r · · · esr


has coefficients in Z and the first condition in the statement of the Theorem implies that
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the sum of any odd number of rows of E is not the zero vector modulo 2. We claim that this

implies that the linear system

E ·


X1

...

Xs

 =


1
...

1

 (4.1)

admits a solution in (Z/2Z)s. Indeed perform a Gauss elimination on the rows of the enlarged

matrix obtained attaching to E the column of 1’s. We obtain a row echelon form. The last

column has a “1” in the rows that were obtained adding together an odd number of the

original rows and has a “0” in the rows that were obtained adding together an even number

of rows. The first condition in the statement implies that whenever there is a “1” in the last

entry of a row, that row contains at least one more entry with a “1”. Therefore, the original

system can be solved recursively.

We need the following

Lemma 24. Assume that (x1, . . . , xs) ∈ (Z/2Z)s is a solution of the linear system (4.1).

Then, there exists an invertible integer m modulo L (i.e. gcd(m,L) = 1) such that

(i) if p is prime with p ≡ m( mod L), then
(
`i
p

)
= (−1)xi for all i = 1, . . . , s;

(ii) m 6≡ 1( mod `i) for all i = 1, . . . , s such that `i > 3.

Furthermore conclusion (ii). above also holds for `i = 3 when {−1, 3} * L′ and also when

{−1, 3} ⊆ L′ but xi 6= x1.

Proof. We will first determine a congruence class m4 for m modulo 4 and then its congruence

class m`i of m modulo each `i such that `i > 2. If 2 ∈ L we will also determine the congruence

class m8 of m modulo 8. Next, we will apply the Chinese Reminder Theorem and deduce

the existence of a congruence class modulo L with the required properties.

The congruence class m4 for m modulo 4 is defined by the following:
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m4 =



(−1)x1 if − 1 ∈ L′;

−1 if {−1, 3} ∩ L′ = ∅;

(−1)xi+1 if 3 ∈ L′,−1 6∈ L′ and `i = 3.

In the event that 2 ∈ L and that `j = 2, then let m8 be the unique invertible congruence

class modulo 8 with the properties that m8 ≡ m4( mod 4) and that

(m2
8 − 1)/8 ≡ xj( mod 2).

Note that if p ≡ m8( mod 8) then(
2

p

)
= (−1)

p2−1
8 = (−1)xj .

For all other odd primes `i ∈ L, let m`i be any of the (`i − 1)/2 integers such that(
m`i

`i

)
= (−1)xi+(m4−1)(`i−1)/4.

Note that: if p is a prime with p ≡ m`i( mod `i) and p ≡ m4( mod 4), by the quadratic

reciprocity law, we have:(
`i
p

)
= (−1)(p−1)(`i−1)/4

(
p

`i

)
= (−1)(m4−1)(`i−1)/4

(
m`i

`i

)
= (−1)xi .

If `i > 3, then (`i − 1)/2 > 1. Therefore, there is always a choice for a class m`i modulo `i

with m`i 6≡ 1( mod `i).

If `i = 3 and −1 6∈ L′, then we have m3 ≡ 2( mod 3) since(m3

3

)
= (−1)xi+(m4−1)/2 = −1 =

(
2

3

)
.
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If `i = 3 and −1 = `1 ∈ L′, then m3 ≡ 2( mod 3) is verified if and only if(m3

3

)
= (−1)xi+(m4−1)/2 = (−1)xi+x1 = −1.

The latter is equivalent to x1 6= xi and this ends the proof of the Lemma.

4.3 Proof of Theorem 22

A consequence of Lemma 24 is that if L = 4|`1 · · · `s| and m is the integer modulo L postu-

lated in the statement of Lemma 24, then for any prime p ≡ m mod L,(
aj
p

)
=

s∏
i=1

(
`i
p

)eij
= (−1)e1jx1+...+esjxs = −1. (4.2)

Consequently, each ai is a quadratic non residue modulo p.

Let us now prove the statement of the Theorem in the case when {−1, 3} * L′ and also

in the case when {−1, 3} ⊆ L′ and it exists a solution (x1, . . . , xs) ∈ (Z/2Z)s of the linear

system (4.1) where the components relative to −1 and to 3 are distinct.

Let f1(X) = m+ LX and

f2(X) =


(m− 1)/2 + (L/2)X if m ≡ 3 mod 4;

(m− 1)/4 + (L/4)X if m ≡ 5 mod 8;

(m− 1)/8 + (L/8)X if m ≡ 1 mod 8.

If 2 6∈ L, we can assume that m 6≡ 1( mod 8). So the condition m ≡ 1 mod 8 arises only on

the case when 2 ∈ L (i.e. 8 | L) and the polynomial f2(X) has always integer coefficients.

Lemma 25. Let f1 and f2 as above. Then the three integers

f1(0)f2(0), f1(1)f2(1), f1(2)f2(2)
are coprime.

Proof. Let q be a prime dividing the gcd(
m(m− 1)

2t
,
(m+ L)(m− 1 + L)

2t
,
(m+ 2L)(m− 1 + 2L)

2t

)
(4.3)
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where t = 1, 2, 3 according to m ≡ 3( mod 4), m ≡ 5( mod 8) or m ≡ 1( mod 8)

If q is odd and q|m(m− 1) then either q | m or q | m− 1.

In the first instance, q - m + L and q - m + 2L since gcd(m,L) = 1. If it happened that

q | (m− 1 + L) and q | (m− 1 + 2L) then q | L which is a contradiction.

In the second instance observe that q - L by (ii) of Lemma 24. Therefore, q - m− 1 + L

and q - m− 1 + 2L. If q | (m+L) and q | (m+ 2L) then q | L which is again a contradiction.

Next note that m(m−1)
2t

is odd unless m ≡ 1( mod 8). So if q = 2, then 16 | (m− 1) and

since m+L is odd, this implies that 16 | (m− 1 +L) and the contradiction that 16 | L.

From Lemma 25 we deduce that the conditions for Schinzel’s Hypothesis H in [19] are

satisfied and so there exists infinitely many x such that f1(x) and f2(x) are both primes.

Hence, there exist infinitely many primes p ≡ m mod L that have the form

p =


1 + 2q if m ≡ 3 mod 4;

1 + 4q if m ≡ 5 mod 8;

1 + 8q if m ≡ 1 mod 8,

where q is also prime.

Let p be sufficiently large so that none of the ai’s can have as order a divisor of 8. It

will be enough to require that p > max{|b8
i − c8

i |, i = 1, . . . , r} where ai = bi/ci. From this

position we deduce that

a
(p−1)/q
i 6≡ 1 mod p.

Furthermore, the condition

−1 =

(
ai
p

)
≡ a

(p−1)/2
i mod p

observed in (4.2) implies that a
(p−1)/2
i 6≡ 1 mod p. Finally, each ai is a primitive root modulo

p and this concludes the proof of the particular case of the Theorem.

We are now left with the case when {−1, 3} ⊆ L′ and the solutions (x1, . . . , xs) ∈ (Z/2Z)s

of the linear system (4.1) are all such that components relative to −1 and to 3 are equal.
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Let us prove the following

Lemma 26. Let E be a matrix with s columns, r rows and entries in Z/2Z. Assume that

the first two columns of E are non zero and that the linear system

E ·


X1

...

Xs

 =


1

...

1


is solvable in (Z/2Z)s and such that each solution (x1, . . . , xs) verifies x1 = x2. Then there

exists an even number of rows of E such that their sum is the vector (0, . . . , 0, 1, 1) ∈ (Z/2Z)s.

Proof. After performing a complete Gauss elimination on the extended matrix, we obtain

an extended matrix in row echelon form. We can obtain an extended matrix such that there

will 1’s in the first two entries of the first row. The only possibility for the above equation

to produce solutions where the first two components are always equal is that k = 2 and that

C = 0. The equality C = 0 implies that the first row of our matrix was produced by the

original matrix summing an even number of rows , and this leads to the statement of the

lemma.

From Lemma 26 we deduce that when {−1, 3} ⊆ L′ and all the solutions (x1, . . . , xs) ∈

(Z/2Z)s of the linear system (4.1) are such that components relative to −1 and to 3 are

equal then there exists an even number of indexes 1 ≤ i1 < · · · < i2s ≤ r such that

ai1 · · · ai2s ∈ −3(Q∗)2.

The second condition in the statement of the Theorem implies that there exists a prime

` ≡ 1 mod 3 such that none of a1, . . . , ar is a perfect cube modulo `. Now, we need the

following:

Lemma 27. Let a1 . . . ar ∈ Q∗ \ {±1} and suppose that
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(a) for every 1 ≤ i1 < . . . < i2t+1 ≤ r, ai1 · · · ai2t+1 6∈ (Q∗)2;

(b) there exists 1 ≤ j1 < . . . < j2t ≤ r such that aj1 · · · aj2t ∈ −3(Q∗)2;

(c) there exists a prime ` ≡ 1 mod 3 such that each of a1, . . . , ar is a cubic non residue

modulo `.

Then, there exists another prime q ≡ 1 mod 3 such that each of a1, . . . , ar is both a cubic

non residue and a quadratic non residue modulo q.

Proof. Let K0 = Q(
√
−3), K1 = K0(a

1/3
1 , . . . , a

1/3
r ) and K2 = Q(a

1/2
1 , . . . , a

1/2
r ). We have

that K0 ⊂ K2 in virtue of hypothesis (b) in the statement. Furthermore, the two field

extensions K1/K0 and K2/K0 are abelian and linearly disjoint by Theorem 8.1 in [8]. Let

λ be a prime of K0 above ` and consider the Artin symbol σλ ∈ Gal(K1/K0). By definition

σλ(a
1/3
i ) 6= a

1/3
i for all i = 1, . . . , r. Similarly let p ≡ 1 mod 3 be a prime such that

(
ai
p

)
= −1

for all i = 1 . . . , r. The existence of such a p is guaranteed by Lemma 24. If π is a prime

of K0 above p, then the Artin symbol σπ ∈ Gal(K2/K0) verifies σπ(a
1/2
i ) = −a1/2

i for all

i = 1, . . . , r. Since

Gal(K1K2/K0) ∼= Gal(K1/K0)×Gal(K2/K0),

by the Chebotarev Density Theorem (see for example [17, page 552]), there exists a prime

η of K0 such that (σλ, σπ) = ση. Finally, the prime q = N(η) ∈ Z will have the required

properties.

Lemma 28. Let S = {a1 . . . ar} ⊂ Q∗ \ {±1} for which the hypotheses of Lemma 27 are

satisfied and let q ≡ 1 mod 3 be a prime such that each of a1, . . . , ar is both a cubic non
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residue and a quadratic non residue modulo q. Let η be a primary prime in Z[ω] (ω =

(−1 +
√
−3)/2) with norm q. Then there exists L′ ∈ Z such that for all primes π ∈ Z[ω]

such that π ≡ η mod L′, one has that, if p = N(π), then each of a1, . . . , ar is both a cubic

non residue and a quadratic non residue modulo p.

Proof. Let us show that as L′ one can take

L′ = 12 ·
∏

` prime:
∃a∈S,v`(a)6=0

` = 3L.

We want to show that any π is a primary prime in Z[ω] such that π ≡ η mod L′ satisfies the

required properties.

To this end, set

L = {ω, 1− ω} ∪ {λ ∈ Z[ω], λ primary prime and ∃a ∈ S, vλ(a) 6= 0}

and write L = {λ1, λ2, λ3, . . . , λs} , where λ1 = ω, λ2 = 1− ω. We have

ai = ±λe1i1 · · ·λesis ,

[
aj
η

]
3

= ωtj(with tj ∈ {±1}).

For any i = 3, . . . , s we have that π ≡ η mod L′ implies π ≡ η mod λi. So by cubic reciprocity

(see for example [1, 7]) [
λi
η

]
3

=

[
λi
π

]
3

.

While π ≡ η mod 9 implies[
ω

η

]
3

=
[ω
π

]
3

and

[
1− ω
η

]
3

=

[
1− ω
π

]
3

.

So, automatically we have that[
aj
η

]
3

=
[aj
π

]
3
∀j = 1, . . . , r,

which implies that none of the ai’s is a cube modulo N(π).
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We also claim that if p = N(π), then for all i = 1, . . . , r(
ai
p

)
=

(
ai
q

)
= −1.

Indeed since π = η + 3Lα for a suitable α ∈ Z[ω], we have p = N(π) ≡ q mod 3L and by

applying one more time the quadratic reciprocity law, we obtain the claim.

If η, L′ ∈ Z[1+
√
−3

2
] are the elements in Lemma 28, then let

f(X) = N(η + αX) = N(L′)X2 + L′Tr(η)X + q ∈ Z[X].

It is clear from the definition of L′ and η that f(X) ≡ 1 mod 3 and whenever x ∈ N is such

that p = f(x) is prime, then each of ai, . . . , ar is both a cubic and a quadratic non residue

modulo p. Furthermore let

g(X) =


(f(X)− 1)/6 if ` ≡ 3 mod 4;

(f(X)− 1)/12 if ` ≡ 5 mod 8;

(f(X)− 1)/24 if ` ≡ 1 mod 8.

In a very similar way as we did above, we can check that the conditions of Schinzel’s

Hypothesis H in [19] are satisfied for f and g; therefore, there exists infinitely many x such

that f(x) and g(x) are both primes. These primes p have the form

p =


1 + 6q if ` ≡ 3 mod 4;

1 + 12q if ` ≡ 5 mod 8;

1 + 24q if ` ≡ 1 mod 8,

where q is also prime and moreover none of the ai’s is either a square or a cube modulo p.

Let now p be sufficiently large so that none of the ai’s can have as order a divisor of

24. Since in this case for each i, a
(p−1)/2
i ≡ −1 mod p and a

(p−1)/3
i 6≡ 1 mod p, each ai is a

primitive root modulo p and this concludes the proof on the Theorem.
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Chapter 5

A Characterization for Schinzel-

Wójcik Problem for “Odd Rationals”

under Hypothesis H

5.1 Introduction

In this Chapter, I am going to introduce a characterization, under Hypothesis H, of the

r-tuples of off rational numbers (i.e. rational numbers supported at odd primes) for which

the Schinzel-Wójcik problem has an affimative answer. That is,

Theorem 29. Let {a1, . . . , ar} ⊂ Q∗ \ {±1}, v2(ai) = 0 for all i = 1, . . . , r. Assuming Hy-

pothesis H, then Schinzel-Wójcik problem has an affimative answer for {a1, . . . , ar} if and

only if at least one of the following two conditions is satisfied :

1. −1 6∈ 〈a1, . . . , ar〉 for all j ∈ {1, . . . , r};

2. For every ν1, . . . , νr ∈ Z, if aν11 · · · aνrr = 1, then ν1 + · · ·+ νr ≡ 0 (mod 2).
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Let us recall two results that are already had proved and represent some parts of the

characterization. One is due to Wójcik in 1996.

Theorem 30. Wójcik (1996)[23]. Let K/Q be a finite extension and a1, · · · , ar ∈ K \{0, 1}

be such that the multiplicative group 〈a1, . . . , ar〉 ⊂ K is torsion free. Then, the Schinzel

Hypothesis H implies that there exist infinitely many primes p of degree 1 such that ordp a1 =

· · · = ordp ar.

The other one is due to F. Pappalardi and A.Susa in 2006.

Proposition 31. [16] Let {a1, . . . , ar} ⊂ Q∗ \ {0,±1} be such that both the following prop-

erties are satisfied:

(i) there exist ω1, . . . , ωr ∈ Z with aω1
1 · · · aωr

r = −1;

(ii) there exist ν1, . . . , νr ∈ Z with ν1 + · · ·+ νr is odd and aν11 · · · aνrr = 1.

Then the Schinzel–Wójcik problem for a1, . . . , ar has a negative answer.

Proof. Assume that δ = ordp a1 = . . . = ordp ar for some p > 2. Since −1 = aω1
1 · · · aωr

r

for suitable ω1, . . . , ωr ∈ Z, we have (−1)δ ≡ aδω1
1 · · · aδωr

r ≡ 1 mod p. This implies that

2 | δ. For each i = 1, . . . , r, a
δ/2
i ≡ −1 mod p. Therefore, we have 1 = (aν11 · · · aνrr )δ/2 ≡

(−1)ν1+···+νr mod p which is a contradiction to the second hypothesis.

It is clear that to complete the proof of Theorem 29, in light of Theorem 30, Theorem 32

and Proposition 31, we need to prove the following:

Theorem 32. Let {a1, . . . , ar} ⊂ Q∗ \ {±1}, v2(ai) = 0 for all i = 1, · · · , r such that

1. −1 ∈ 〈a1, . . . , ar〉 for all j ∈ {1, . . . , r};
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2. For every ν1, . . . , νr ∈ Z, if aν11 · · · aνrr = 1, then ν1 + · · ·+ νr ≡ 0 (mod 2),

then Hypothesis H implies the existence of infinitely many prime numbers p such that

〈a1 mod p〉 = 〈a2 mod p〉 = · · · = 〈ar mod p〉 .

5.2 Lemmata

We shall follow the approach of the proof of Theorem 30 from [23].

Lemma 33. Suppose that k, F ∈ N are such that k | F . Suppose that `1, . . . , `n are odd prime

numbers such that `j - k for all j = 1, . . . , n. For all rational integers x1, . . . , xn ∈ Z/kZ,

and for every integer t ≡ 1 mod k such that gcd(t, F ) = 1, with the property that there exists

infinitely many primes q in Q(ζk) of degree one such that:

[
`i
q

]
k

= ζxik (1 ≤ i ≤ m), Nq ≡ t mod F.

Proof. Let ζk = e2πi/k. Since

L = Q
(
ζk, `

1/k
1 , `

1/k
2 , . . . , `1/k

n

)

is finite abelian Galois extension of Q(ζk), by Kummer Theory, we have
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Gal(L/Q (ζk)) ∼= 〈`1, . . . , `n〉 (Q (ζk)
∗)k/(Q (ζk)

∗)k

∼=
n∏
j=1

〈`j〉 (Q (ζk)
∗)k/(Q (ζk)

∗)k.

We deduce that [L : Q (ζk)] = |GalL/Q (ζk) | = kn, since by the hypothesis that `j - 2k,

〈`j〉(Q(ζk)
∗)k/(Q(ζk)

∗)k ∼= Z/kZ j = 1, . . . , n.

Furthermore

[L(ζF ) : Q] = knϕ(F )

and, if x1, · · · , xn ∈ Z/kZ and s ∈ Gal(Q(ζF )/Q), then there exists σ ∈ Gal(L(ζF )/Q) such

that

σ(ζF ) = s(ζF ), σ(`
1/k
i ) = ζxik `

1/k
i , i = 1, · · · , n.

By Chebotarev’s Density Theorem, there exist infinitley many degree one prime ideals q

in Q(ζk) such that
[
L
q

]
= σ, where

[
L
q

]
denotes the Artin symbol.

If N(q) is sufficiently large, we obtain

[
`i
q

]
k

`
1/k
i ≡ `

(N(q)−1)/k
i `

1/k
i ≡

(
`

1/k
i

)N(q)

≡
[
L

q

]
`

1/k
i ≡ ζxik `

1/k
i (mod q).

and

ζ
N(q)
F ≡

[
L

q

]
k

ζF ≡ ζtF (mod q)
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Hence, [
`i
q

]
k

= ζxik and N(q) ≡ t (modF ).

The following lemma is due to Wójcik in [23, Lemma 5].

Lemma 34. [23] Suppose that k, F ∈ N satisfy the condition kϕ(k)+1(2ϕ(k))! | F . Let q0 be

a prime such that

q0 ≡ 1 mod k, q0 - F and gcd(
q0 − 1

k
, F ) = 1.

Then there exists a polynomial f(X) ∈ Z[X] such that f(X) and (f(X) − 1)/k satisfy the

assumptions of Hypothesis H and, if q = f(x) is prime for x ∈ N, then q ∼ q−1
0 mod F

where q and q0 are primes of Q(ζk) such that q0 = N(q0) and q = N(q).

5.3 Proof of Theorem 32

Proof. Let k = 2α where α is large enough be determined later and let F ∈ N be such

that Lemma 34 can be applied. Suppose that {a1, . . . , ar} ∈ Q∗ \ {±1} are such that

−1 ∈ 〈a1, . . . , ar〉 for all j ∈ {1, . . . , r}. Let

L = {` prime : v`(aj) 6= 0 for some j ∈ 1, . . . , r}.
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Write L = {`1, . . . , `n} and, for each j = 1, . . . , r,

aj = (−1)e0j · `e1j1 · `
e2j
2 · · · `enj

n

where eij ∈ Z for all 1 6 i 6 n, 1 6 j 6 r. Define the matrix

A :=


e11 · · · en1

...
...

e1r · · · enr

 .

Next set t = 1 + k ∈ N and suppose that x1, . . . , xn ∈ Z/kZ have the property that there

exist prime ideal q0 in Q(ζk) of degree one (Nq0 := q0) with the properties:

[
`i
q0

]
k

= ζxik 1 ≤ i ≤ m, Nq0 ≡ t mod F.

Then,
[
−1
q0

]
k

= (−1)(Nq0−1)/k = −1 and

[
aj
q0

]
k

=

[
−1

q0

]e0j
k

.

[
`1

q0

]e1j
k

· · ·
[
`n
q0

]enj

k

= (−1)e0jζ
x1e1j
k ζ

x2e2j
k · · · ζxnenj

k

= (−1)e0jζ
e1jx1+···+enjxn
k .
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To prove that
[
aj
q0

]
k

= −1 = ζ
k/2
k , it is equivalent to prove that the following system of

congruences is solvable:

A ·


X1

...

Xn

 ≡


2α−1(1 + e10)

...

2α−1(1 + er0)

 (mod2α). (5.1)

By applying the method that has been introduced in Chapter 2, we get the following equiv-

alent system:



d1x1 ≡ k1 (mod2α)

...

dsxs ≡ ks (mod2α)

0 ≡ ks+1 (mod2α)

...

0 ≡ kn (mod2α)

with di = 2βi , i = 1, . . . , s and ki ∈ {0, 2α−1}, i = 1, . . . , n.

The second condition in the statement of Theorem 32 implies that, in order to obtain

zero on the left side above, an even number of raws have to be added. Hence ki = 0 for

i = s+ 1, . . . , n.

Furthermore, since ki is 0 or 2α−1 for all i = 1, . . . , s, if we choose α sufficiently large so

that di < 2α−1 for all i = 1, . . . , s, we obtain a compatible system of cogruences. Therefore,
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by Lemma 33,
[
aj
q0

]
k

= −1 for all j = 1, . . . , r.

By applying Lemma 34, we deduce that there are infinitely many x such that q =

f (x) and p = (f (x)− 1) /k are both primes. Moreover, q ∼ q−1
0 mod F where q and

is primes of Q(ζk) such that q = N(q). Hence,

a
q−1
k

j ≡
[
aj
q

]
k

=

[
aj
q0

]−1

k

= −1 (mod q) for all j = 1, . . . , r.

Therefore,

apj ≡ −1 (mod q) for all j = 1, . . . , r.

Thus,

apj ≡ −1 (mod q) for all j = 1, . . . , r.

Hence,

a2p
j ≡ 1 (mod q) for all j = 1, . . . , r.

For sufficiently large q = 2αp+ 1,

〈a1 mod q〉 = 〈a2 mod q〉 = · · · = 〈ar mod q〉 = 2p.
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Chapter 6

The Average of Schinzel–Wójcik

problem

6.1 Introduction

One of the famous standard problems in Multiplicative Number Theory is studying the

average of the values of an arthematic functions. The average of the famous arthimetic func-

tions like ϕ(n), τ(n), σ(n),Ω(n), ω(n) has been considered extremely. I will recall again some

results on the average version of Artin’s conjecture on primitive roots and some generaliza-

tions of Artin’s conjecture then I will introduce my work on the Average of Schinzel–Wójcik

problem.

In 1969, P.J. Stephens [21] proved, free of any hypothesis, that Artin’s conjecture on

average holds. More preciesly,

Theorem 35. [21] If T > exp(4(log x log log x)
1
2 ), then

1

T

∑
a≤T

Na(x) = A lix+O

(
x

(log x)D

)
,
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where A =
∏̀ (

1− 1
`(`−1)

)
is Artin’s constant, and the constant D > 1 is arbitrary.

Also, he proved the following:

Theorem 36. [21] Let A be Artin’s constant, and E > 2 be an arbitrary real number. Then,

for T > exp(6(log x log log x)
1
2 ), we have

1

T

∑
a≤T

{Na(x)− A lix}2 � x2

(log x)E
(as x −→∞) .

Moreover, by using the normal order method of Turan, he proved that the number of

exceptions is bounded by O(T ) when T > exp(6(log x log log x)
1
2 ) and as T, x tends to infinity.

In 2015, C. Pehlivan and L. Menici [13] studied the average behaviour of NΓ,m(x), which

is defined in Chapter 1, where Γ = 〈a1, · · · , ar〉 ⊆ Zr. They proved the following results:

Theorem 37. [13] Assume T ∗ := min{Ti : i = 1, . . . , r} > exp(4(log x log log x)
1
2 ) and

m ≤ (log x)D for an arbitrary positive constant D. Then

1

T1 · · ·Tr

∑
ai∈Z

0<a1≤T1
...

0<ar≤Tr

N〈a1,··· ,ar〉,m(x) = Cr,m Li(x) +O

(
x

(log x)M

)
,

where Cr,m =
∑
n≥1

µ(n)
(nm)rϕ(nm)

and M > 1 is arbitrarily large.

Theorem 38. [13] if T ∗ > exp(6(log x log log x)
1
2 ), then

1

T1 · · ·Tr

∑
ai∈Z

0<a1≤T1
...

0<ar≤Tr

{
N〈a1,··· ,ar〉,m(x)− Cr,m Li(x)

}2 � x2

(log x)M ′
,

where M ′ > 2 is arbitrarily large.

By using the Euler product expansion and some properties of Euler function, they showed

that
Cr,m =

1

mr+1

∏
p|m

(
1− p

pr+1 − 1

)−1

Cr

where Cr =
∏̀ (

1− 1
`r−1

)
is r-rank Artin constant. They also proved that, for Ti >

exp(4(log x log log x)
1
2 ) for all i = 1, . . . , r, m ≤ (log x)D and any constant M > 2,
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1

T1 · · ·Tr

∑
ai∈Z

0<a1≤T1
...

0<ar≤Tr

N〈a1,··· ,ar〉,m(x) =
∑
p≤x

p≡1 (mod m)

Jr((p− 1)/m)

(p− 1)r
+O

(
x

(log x)M

)
,

where Jr(n) = nr
∏̀
|n

(1 − 1/`r) is the so called Jordan’s totient function. The above is a

generalization of Moree’s result in [10].

6.2 Schinzel–Wójcik Problem on Average

Now, let us discuss Schinzel–Wójcik problem on average. Define the counting function

Sa,m(x) = #

{
p 6 x : ordpa1 = . . . = ordpar =

p− 1

m

}
, where a = (a1, · · · , ar) .

Define

Mm(x) :=
∑
p≤x

(
ϕ((p− 1)/m)

(p− 1)/m

)r
, f(k) =

∑
(d1,...,dr)∈Nr

k=[d1,··· ,dr]

µ(d1) · · ·µ(dr)

d1 · · · dr

and

g(k) =
∑

(d1,...,dr)∈Nr

k=[d1,··· ,dr]

µ2(d1) · · ·µ2(dr)

d1 · · · dr
.

It is clear that f and g are multiplicative in k, they are zero for any non-square free integer,

f(`) = (1− 1
`
)r − 1 , g(`) ≤ 2r

`
for any prime number ` and g(k) ≤ 2rω(k)

k
for any k ∈ N.

Lemma 39. ∑
k>T

2rω(k)

k2
� (log T )2r−1

T

for any positve integers B andC.

Proof. By using Wirsing Theorem [11], it is simple to show that

A(X) :=
∑
n≤X

2rω(n) ∼ crX(logX)2r−1, for some constant cr
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Then by using partial sumation, we get∑
k>T

2rω(k)

k2
= −A(T )

T 2
+ 2

∞∫
T

A(t)dt

t3
≤ 2

T 2∫
T

A(t)dt

t3
+ 2

∫ ∞
T 2

A(t)dt

t3

and since for large T , we have
∞∫

T 2

A(t)dt

t3
≤

∞∫
T 2

dt

t3/2
� 1

T

and
T 2∫
T

A(t)dt

t3
≤ log2r−1 T 2

T 2∫
T

dt

t2
� (log T )2r−1

T
.

Therefore, ∑
k>T

2rω(k)

k2
� (log T )2r−1

T

Lemma 40.

Mm(x) =
li(x)

ϕ(m)

∏
`

(
1 +

ϕ((m, `))f(`)

ϕ(`)(m, `)

)
+O

(
x

logmin{C−1,B} x

)
for any positve integers B andC.

Proof.

Mm(x) =
∑
p≤x

∑
d| p−1

m

µ(d)

d

r

=
∑
p≤x

∑
d1,...,dr∈N

[d1,...,dr]| p−1
m

µ(d1) · · ·µ(dr)

d1 · · · dr

=
∑

d1,...,dr∈N
d1≤x,...,dr≤x

µ(d1) · · ·µ(dr)

d1 · · · dr
π(x, 1;m[d1, . . . , dr])

=
∑

d1,...,dr∈N
m[d1,...,dr]≤logB−2r+1 x

µ(d1) · · ·µ(dr)

d1 · · · dr
π(x, 1;m[d1, . . . , dr]) + EB(x,m),

where

EB(m,x) ≤
∑

d1,...,dr∈N
[d1,...,dr]>(logB−2r+1 x)/m

π(x, 1;m[d1, . . . , dr])µ
2(d1) · · ·µ2(dr)

d1 · · · dr
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≤
∑

d1,...,dr∈N
[d1,...,dr]>logB−2r+1 x

#{n ≤ x : m[d1, . . . , dr] | n− 1}µ2(d1) · · ·µ2(dr)

d1 · · · dr

≤ x

m

∑
d1,...,dr∈N

[d1,...,dr]>logB−2r+1 x

µ2(d1) · · ·µ2(dr)

[d1, . . . , dr]d1 · · · dr

=
x

m

∑
k>logB−2r+1 x

g (k)

k

≤ x

m

∑
k>logB−2r+1 x

2rω(k)

k2
.

By Lemma 39, we deduce

EB(m,x)� x

m

(log log x)2r−1

logB−2r+1 x
� 1

m

x

logB x
.

Consider the main term ∑
d1,...,dr∈N

m[d1,...,dr]≤logB−2r+1 x

µ(d1) · · ·µ(dr)

d1 · · · dr
π(x, 1;m[d1, . . . , dr]).

By applying Siegel-Walfisz Theorem [22] for primes in an arithmetic progression which states

that

π(x, 1;m[d1, . . . , dr]) =
li(x)

ϕ(m[d1, . . . , dr])
+O

(
x

logC x

)
provided that m[d1, . . . , dr] < logB−2r+1 x where B − 2r + 1 and C are arbitrary positive

constants, we obtain:

Mm(x) = li(x)
∑

d1,...,dr∈N
[d1,...,dr]≤(logB−2r+1 x)/m

µ(d1) · · ·µ(dr)

ϕ(m[d1, . . . , dr])d1 · · · dr
+O

(
x

logC−1 x
+

x

logB x

)

= li(x)
∑

d1,...,dr∈N

µ(d1) · · ·µ(dr)

ϕ(m[d1, . . . , dr])d1 · · · dr
+O

(
x

logmin{C−1,B} x

)
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+O

 ∑
d1,...,dr∈N

[d1,...,dr]>(logB−2r+1 x)/m

µ2(d1) · · ·µ2(dr)

[d1, . . . , dr]d1 · · · dr
x

m log x



= li(x)
∑
k>1

1

ϕ(mk)

∑
(d1,...,dr)∈Nr

k=[d1,...,dr]

µ(d1) · · ·µ(dr)

d1 · · · dr
+O

(
x

logmin{C−1,B} x

)

=
li(x)

ϕ(m)

∑
k>1

ϕ((m, k))

ϕ(k)(m, k)

∑
(d1,...,dr)∈Nr

k=[d1,...,dr]

µ(d1) · · ·µ(dr)

d1 · · · dr
+O

(
x

logmin{C−1,B} x

)

=
li(x)

ϕ(m)

∑
k>1

ϕ((m, k))

ϕ(k)(m, k)
f(k) +O

(
x

logmin{C−1,B} x

)
.

By multiplicativity and the properties of f , we get

Mm(x) =
li(x)

ϕ(m)

∏
`

(
1 +

∑
α>1

ϕ((m, `α))f(`α)

ϕ(`α)(m, `α)

)
+O

(
x

logmin{C−1,B} x

)
.

=
li(x)

ϕ(m)

∏
`

(
1 +

ϕ((m, `))f(`)

ϕ(`)(m, `)

)
+O

(
x

logmin{C−1,B} x

)
.

Lemma 41. Given m ∈ N, we have∑
p≤x

τ

(
p− 1

m

)r
� 1

ϕ(m)
x (log x)2r−1 .

Proof. ∑
p≤x

τ

(
p− 1

m

)r
=
∑
p≤x

∑
e| p−1

m

1

r

=
∑
p≤x

∑
(d1,··· ,dr)∈Nr

d=[d1,··· ,dr]| p−1
m

1
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=
∑

(d1,··· ,dr)∈Nr

md≤x−1

∑
p≤x

p≡1(modmd)

1.

By using Dirichlet hyperbola method, we get∑
p≤x

τ

(
p− 1

m

)r
= 2

∑
(d1,··· ,dr)∈Nr

md≤
√
x−1

∑
k≤x−1

md
kmd=p−1

1−
∑

(d1,··· ,dr)∈Nr

md≤
√
x−1

∑
k≤
√
x−1

kmd=p−1

1

= 2
∑

(d1,··· ,dr)∈Nr

md≤
√
x−1

∑
p≤x

p≡1(modmd)

1−
∑

(d1,··· ,dr)∈Nr

md≤
√
x−1

∑
p≤md

√
x−1+1

p≡1(modmd)

1

= 2
∑

(d1,··· ,dr)∈Nr

md≤
√
x−1

π (x, 1;md)−
∑

(d1,··· ,dr)∈Nr

md≤
√
x−1

π
(
md
√
x− 1 + 1, 1;md

)
.

Define LCM(d; r) := # {(d1, · · · , dr) ∈ Nr : [d1, · · · , dr] = d} . Asin [3],we have

LCM(pn1
1 . . . pnt

t ; r) =
t∏
i=1

(ni + 1)r − nri .

Therefore, we get∑
p≤x

τ

(
p− 1

m

)r
= 2

∑
d∈N

md≤
√
x−1

LCM(d; r)π (x, 1;md)−
∑
d∈N

md≤
√
x−1

LCM(d; r)π
(
md
√
x− 1 + 1, 1;md

)

≤ 2
∑
d∈N

md≤
√
x−1

LCM(d; r) π (x, 1;md) .

By using Brun-Titchmarsh theorem [12], we get∑
p≤x

τ

(
p− 1

m

)r
≤ 2

x

log x
md

∑
d∈N

md≤
√
x−1

LCM(d; r)

ϕ (md)

≤ x

log x

∑
d∈N

md≤
√
x−1

LCM(d; r)

ϕ (md)
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≤ x

log x

1

ϕ (m)

∑
d∈N

d≤
√
x−1
m

LCM(d; r)

ϕ (d)

≤ x

log x

1

ϕ (m)

∑
d∈N

d≤
√
x−1
m

LCM(d; r)

ϕ (d)
.

Since LCM(d; r) is multiplicative function, therefore∑
p≤x

τ

(
p− 1

m

)r
≤ x

log x

1

ϕ (m)

∏
`≤
√
x−1

(
1 +

2r − 1

`− 1
+

3k − 2r

` (`− 1)
+

4r − 3r

`2 (`− 1)
+ . . .

)

≤ x

log x

1

ϕ (m)

∏
`≤
√
x−1

(
1 +

2r

`
+

3r

`2
+ . . .

)

≤ x

log x

1

ϕ (m)

∏
`≤
√
x−1

(
1 +

2r

`
+O

(
1

`2

))

≤ x

log x

1

ϕ (m)
exp

 ∑
`≤
√
x−1

log

(
1 +

2r

`
+O

(
1

`2

))

� x

log x

1

ϕ (m)
exp

 ∑
`≤
√
x−1

2r

`
+O

 ∑
`≤
√
x−1

1

`2


� x

log x

1

ϕ (m)
exp

(
log
(
log
√
x− 1

)2r
)

� 1

ϕ (m)
x (log x)2r−1 .

Notations.

• a means (a1, · · · , ar) .

• a ≤ T means ai ≤ T for all i = 1, · · · , r.

• χ means (χ1, . . . , χr) .

• χ0 means the r-tuple (χ0, . . . , χ0) .
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Theorem 42. Assume T > exp
(

4 (log x log log x)
1
2

)
, then for every k > 1, we have

1

T r

∑
a≤T

Sa,m(x) = δm li(x) +O

(
x

(log x)k

)
,

where δm = 1
mrϕ(m)

∏̀ (
1 + ϕ((m,`))f(`)

ϕ(`)(m,`)

)
and f(`) =

(
1− 1

`

)r − 1

Proof.

1

T r

∑
a≤T

Sa,m(x) =
1

T r

∑
a≤T

∑
p6x

p≡1(modm)

tp,m (a) ,

where

tp,m (a) =


1 if ordp a1 = · · · = ordp ar = p−1

m
;

0 otherwise.

Which can be written as following

tp,m (a) =
∑
χ

cm
(
χ
)
.

Therefore, cm
(
χ
)

=
1

(p− 1)r

∑
a∈(Z/p−1Z)r

ordp a= p−1
m

χ (a) .

So,
1

T r

∑
a6T

Sa,m(x) =
1

T r

∑
p6x

p≡1(modm)

∑
0<a6T

tp,m (a)

=
1

T r

∑
p6x

p≡1(modm)

∑
0<a6T

∑
χ

cm
(
χ
)
χ (a)

=
1

T r

∑
p6x

p≡1(modm)

∑
0<a6T

cm

(
χ

0

)
χ

0
(a) + Em(x),

where Em(x) =
1

T r

∑
p6x

p≡1(modm)

∑
0<a6T

∑
χ 6=χ

0

cm(χ)χ (a) .
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Let us talk about the main term

1

T r

∑
p6x

p≡1(modm)

∑
0<a6T

cm

(
χ

0

)
χ

0
(a)

Since |cm(χ
0
)| 6 1 and

cm(χ
0
) =

1

(p− 1)r

∑
a∈(Z/p−1Z)r

ordp a= p−1
m

χ
0

(a)

=
1

(p− 1)r

∑
a∈(Z/p−1Z)r

ordp a1=···=ordp ar=m

1

=
1

(p− 1)r

(
#

{
a 6 p− 1 : ordp a =

p− 1

m

})r

=
1

(p− 1)r
ϕ

(
p− 1

m

)r
,

and
1

T r

∑
0<a6T

χ
0
(a) =

1

T r

(
[T ]−

[
T

p

])r

=
1

T r

(
T − T

p
+O(1)

)r

=

((
1− 1

p

)
+O(

1

T
)

)r

=

(
1− 1

p

)r
+O

(
r∑
i=1

1

T i

)

= 1 +O

(
1

p

)
+O

(
1

T

)
,

therefore

1

T r

∑
p6x

p≡1(modm)

∑
0<a6T

cm(χ
0
)χ

0
(a) =

∑
p6x

p≡1(modm)

cm(χ
0
)

(
1 +O

(
1

p

)
+O

(
1

T

))
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=
∑
p6x

p≡1(modm)

cm(χ
0
) +O

 ∑
p6x

p≡1(modm)

1

p

+O

 1

T

∑
p6x

p≡1(modm)

1



=
∑
p6x

p≡1(modm)

1

mr

(
φ
(
p−1
m

)
p−1
m

)r

+O (log log x) +O

(
1

T

x

log x

)

=
1

mr

∑
p6x

p≡1(mod m)

(
φ
(
p−1
m

)
p−1
m

)r

+O (log log x) +O

(
1

T

x

log x

)

=
1

mr
Mm(x) +O (log log x) +O

(
1

T

x

log x

)
By lemma 40,

= δm li(x) +O

(
x

logmin{C−1,B} x

)
+O (log log x) +O

(
1

T

x

log x

)
,

for any positve integers B and C, where δm =
1

mrϕ (m)

∏
` prime

(
1 +

ϕ((m, `))f(`)

ϕ(`)(m, `)

)
.

Now, let us consider the error term

Em(x) =
1

T r

∑
p6x

p≡1(modm)

∑
0<a6T

∑
χ 6=χ

0

cm
(
χ
)
χ (a)

|Em(x)| ≤ 1

T r

r∑
j=1

∑
p6x

p≡1(modm)

∑
χ

χj 6=χ0

|cm
(
χ
)
| ∗ |

∑
0<a6T

χ (a) |

=
1

T r

r∑
j=1

∑
p6x

p≡1(modm)


r∏

k=1
k 6=j

 1

p− 1

∑
a∈Z/(p−1)Z
ordpa= p−1

m

χ (a)

 | ∑
0<a6T

χ (a) |

 .

∗

∑
χ 6=χ0

 1

p− 1

∑
a∈Z/(p−1)Z
ordpa= p−1

m

χ (a)

 | ∑
0<a6T

χ (a) |


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=
1

T

r∑
j=1

∑
p6x

p≡1(modm)

 r∏
k=1
k 6=j

∑
χ

1

ordχm

 ∗(∑
χ 6=χ0

1

ordχm
∗ |

∑
0<a6T

χ (a) |

)

≤ r

T

∑
p6x

p≡1(modm)

τ

(
p− 1

m

)r−1
(∑
χ 6=χ0

1

ordχm
∗ |

∑
0<a6T

χ (a) |

)
.

=
r

T

∑
p6x

p≡1(modm)

∑
χ 6=χ0

τ
(
p−1
m

)r−1

ordχm
∗ |

∑
0<a6T

χ (a) |.

By holder inequality, we have

≤ r

T


∑
p6x

p≡1(modm)

∑
χ 6=χ0

(
τ
(
p−1
m

)r−1

ordχm

) 2s
2s−1


2s

2s−1

∗


∑
p6x

p≡1(modm)

∑
χ 6=χ0

(
|
∑

0<a6T

χ (a) |

)2s


1
2s

.

By using lemma 5 in [21], we have

� 1

T


∑
p6x

p≡1(modm)

τ

(
p− 1

m

) 2s(r−1)
2s−1

+1


2s

2s−1

∗
(
x2 + T s

) 1
2s T

1
2

(
log eT s−1

) 2s
2s−1

By using lemma 41, we have

� 1

T
1
2

{
1

ϕ (m)
x (log x)2r−1

} 2s
2s−1 (

x2 + T s
) 1

2s
(
log eT s−1

) 2s
2s−1

� 1

T
1
2

x1− 1
2s (log x)2r−1 (x2 + T s

) 1
2s .

By choosing the parameter s as in [21] and by the same technique and by the hypothesis

T > exp
(

4 (log x log log x)
1
2

)
, we get

Em (x)� x

(log x)k
for every k > 1.

Therefore, for every k > 1, we have
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1

T r

∑
a6T

Sa,m(x) = δm li(x)+O

(
x

logmin{C−1,B} x

)
+O (log log x)+O

(
1

T

x

log x

)
+O

(
x

(log x)k

)
.

Since T > exp
(

4 (log x log log x)
1
2

)
, therefore, for every k > 1, we have

1

T r

∑
a6T

Sa,m(x) = δm li(x) +O

(
x

(log x)k

)
.
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Chapter 7

Future Work

I will try to conclude the characterization of Schinzel–Wójcik problem under Hypothesis

H which had discussed in Chapter 5 and continue studying Schinzel–Wójcik problem on

average ingeneral. More precisely, I will try to study

1

T r

∑
a≤T

Sa(x), where Sa(x) = {p 6 x : ordpa1 = · · · = ordpar}.

Moreover, I will study the Average n- dimensional Artin’s Conjecture ,that is,

1

T r

∑
a≤T

# {p 6 x : ordpa1 | ordpa2 · · · |ordpar} .

In addition, I will study the Average of Schinzel–Wójcik constant δa1,··· ,ar , which is defined

in Theorem 9 [16] as

δa1,...,ar =
∑
m∈N
k∈Nr

µ(k)

ϕ(mk)

#Γ̃k(mk)

#Γk(mk)
.

More precisely, I will try to prove (the same result, under GRH, in Theorem 12 [16] ), free

of any hypothesis, that

1

T r

∑
a≤T

δa1,...,ar = δ + o (1) , where δ =
∏
`

(
1− `(`r − (`− 1)r − 1)

(`− 1)(`r+1 − 1)

)
.
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